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Introduction.

The main purpose of the investigations described in the 
present paper has been to study the influence of a 

homogeneous magnetic field on the flow of a conductive 
liquid — mercury — in pipes of circular or rectangular 
section. In a previous paper1 this influence was examined 
theoretically on the assumption of a laminar flow in a flat 
channel of rectangular section, the field being perpendicular 
to the channel-sides of largest extension and the two other 
sides being formed by electrodes of highly conductive 
material. The experiments to be considered in the following 
were planned chiefly with a view to testing the main re
sults of the theoretical discussion. They have, however, in 
addition thrown light upon phenomena not readily open 
to such discussion, in particular upon the influence of a 
homogeneous magnetic field on a turbulent flow and the 
transition of the turbulent form of llow into the laminar. 
In this respect the present work may be regarded as an 
extension of an investigation performed several years ago 
in the same laboratory and having as subject the com
parison of the How of water and mercury in pipes“. The

1 Theory of the laminar Flow of an electrically conductive Liquid 
in a homogeneous magnetic Field. Det kgl. Danske Vidensk. Selsk. math.- 
fys. Medd. XV, 6, 1937.

2 A Comparison between the Flow of Water and Mercury in Pipes 
etc. Mémoires de l’Académie Royale des Sciences de Danemark, Section 
des Sciences 8me Série, t. X, n° 5. 1926.
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latter investigation showed that the Reynolds’ Law of 
Similarity holds good for mercury even in cases in which 
the walls of the pipe are not wetted by this liquid. The 
investigations here reported amply confirm this fundamen
tal experience.

Professor Hartmann desires in this place to express 
his gratitude to the Trustees of the Carlsberg Foundation 
and of The H. C. Ørsteds Fund for having rendered pos
sible by financial aid the completion of the present re
search work.
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I. The experimental Arrangements.

The general Arrangement.
In fig. 1 a diagram is given of the general experimental 

arrangement. A hydrodynamic circuit is used in which the 
llow is maintained by an electromagnetic pump P.' B is

Fig. 1. General experimental Arrangement.

the duct — a glass tube or a rectangular channel in which 
the flow is examined. It is arranged in a homogeneous 
magnetic field F between the polepieces of a special electro
magnet. The pressure drop in a certain length of the duct 
is observed by means of two manometer tubes connected 
to sockets on the duct. The volume of mercury passing 
each section of the circuit pr. sec. is measured by a simple 
flow meter of the calibrated nozzle pattern Vx. For rapid 
control of the volume flow a special flow meter V2 was

1 The principle of this pump is described in the paper referred to 
in note 1, p. 3.
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furnished. As the mercury was heated by the current 
passed through the electromagnetic pump a cooling device 
K had to be introduced, the temperature being controlled 
by the thermometer T and kept at 20° C. A photograph 
showing part of the circuit and particularly the electro

Fig. 2. Photograph of experimental Arrangement.

magnetic pump (to the right) and the electromagnet (to 
the left) is reproduced in fig. 2.

The various members of the experimental circuit will 
be described in detail below. Here some words may be 
said about the preparation of the ducts, especially the glass 
tubes. These were all comparatively narrow. Now, when a 
capillary has not undergone a special cleaning process the 
results of the tlow experiments are quite indeterminate. 
This is due to a thin film of impurities adhering to the 
interior walls. In order to remove this film or layer the 
glass capillaries were for hours treated with concentrated
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sulphuric acid with potassium bi-chromate K^Cr^O^. Here
after they were washed first with water and then with 
absolute alcohol. If the capillaries were then dried by 
drawing a llow of dry air through them the results of the 
experiments were reproducible with an exactitude of a few 
tenths of one p. c. and remained so for a very long time, 
provided the capillaries were not emptied and the mercury 
was thoroughly cleaned and dried before being introduced 
into the circuit.

With the rectangular ducts the use of the cleaning 
method here indicated was practially precluded. Instead 
the walls were treated with benzol in a way described 
below.

Measurement of the Flow of Mercury.
The How of mercury, i. e. the volume V passing each 

section of the circuit per. sec., was, as indicated, normally 
measured by means of a nozzle N through which the How 
had to pass as indicated in lig. 1. The nozzle was arranged 
in a vertical tube and could readily be interchanged. Seven 
nozzles were used. In Tab. I the diameters of the bores 
are stated in the first column.

Tab. I.

Constants of Nozzles used in Measurement of Flow.

Orifice Constant
mm. k

2.950 1.960
2.043 1.000
1.551 0.584
1.106 0.294
0.832 0.179
0.651 0.111
0.412 0.0463
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In the second column the constant k of the apparatus 
defined by
(1) V = k]/h cm.3/sec.

is entered. In the formula (1) h is the pressure drop in the 
nozzle measured in cm. Hg.

For the observation of h the manometer tubes shown
in fig. 1 were employed. The tubes were mounted on a 

transparent mm.-scale illuminated from be
hind. During each of the original experiments 
the magnetic field intensity H was kept con
stant and the flow adjusted for a series of 
values of the Reynolds’ number B. With each 
experimental pipe or channel a set of ex
periments corresponding to a certain number 
of //-values was performed. In order to facili
tate the work a card-board with notches as 
indicated in fig. 3 was produced corresponding 
to each experimental pipe or channel. When 
the pressure drop was equal to the distance

from the lower edge of the card-board to the horizontal 
edge of a certain notch the Reynolds’ number of the flow 
in the experimental duct had the value written sidewards 
to the notch in question. From this it will be gathered 

Fig. 3. Card
board with Not
ches for rapid 
Control of the 
Volume Flow.

; 7000

6000 
\5000 

\4000 
j 3000
\2000

how the card-board was used for rapid setting of the flow 
during an experiment.

It was found expedient to supplement the above described 
flow meter by another apparatus intended particularly for 
rapid control of the nozzle gauge. The apparatus referred 
to is indicated by V2 *n ^g- !• In ^g- 4 it is shown on a 
larger scale. It consists mainly of a glass pipe BCI) of 
known calibre. Just in front of the entrance to this pipe 
an air bubble may be pressed into the flow of mercury.
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This bubble is carried with the flow and what is now 
measured is the time of its passage over the known distance 
between two marks C and D on the pipe. From this 
measurement and the calibre of the pipe the volume flow 
in the circuit is readily derived.

There are several precautions to be taken in the design 
and use of the flow gauge here considered. The bubble 
must fill out the whole section of the pipe. Therefore the

aperture of the pipe must not be too large; in the apparatus 
in question it was 5.25 mm. At the moment at which the 
bubble is introduced slight fluctuations of the velocity will 
occur. So the bubble has to pass a certain length (9 cm.) 
of the pipe before entering the range CD which in the 
apparatus in question was 37 cm. It is absolutely essential 
that the walls of the pipe should be clean and dry; they 
were made so by the same method as was employed with 
the experimental capillaries. The air introduced into the 
pipe must also be dry and was therefore led through the 
tube T with a water absorbing material. In front of the 
inlet end of the apparatus a reservoir was arranged to 
stamp out the vibrations caused by the introduction of the 
bubble. At the exit end of the pipe another reservoir 
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was mounted, through which the bubble escaped after 
having passed the stretch CI).

The apparatus here described was, as stated, mainly used 
for quick control of the nozzle meter. In such a check the 
manometers of the latter gauge were always read during 
the passage of a bubble, because the bubble gave rise to 
a slight reduction of the velocity of the flow. The accuracy

Fig. 5. Field-Intensity Curves at various Air Gaps.

of the measurement with the bubble apparatus was nor
mally about 0.5 p. c.

The Magnet.
The construction of the magnet will appear from fig. 2. 

The length of the field was 36 cm., the height of it 1.67 cm. 
Field intensity curves (with the exciting current as abscissa) 
were plotted for the values 2, 3, 4, 5, 6, 7 mm. of the width 
d of the air gap. These curves are reproduced in fig. 5. It 
should be noted that with the air gap 2 mm. and a field 
intensity H 8000 Gauss the intensity at points 3 cm. 
from the ends of the pole-pieces was but 1.5 p. c. smaller 
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than at the middlepoint of the field. This lack of homo
geneity was eventually reduced to 0.7 p. c. by an artificial 
straying applied to the centre of the field. Everything goes 
to show that this degree of homogeneity amply suffices 
for the purpose in question. It is a well-known fact that 
the field intensity is not a definite function of the exciting 
current unless certain precautions are taken. In the case 
considered a definite value of the field intensity was obtained

Fig. 6. Non-homogeneous magnetic Field produced by making one Set 
of Magnet Coils currentless.

by approaching the value of the magnetising current through 
a series of slow periodic current variations with an am
plitude gradually going down to zero. This method was also 
used for demagnetising the magnet when the pressure drop 
was to be read corresponding to zero field intensity.

In connection with the magnet some observations on the 
effect of a non-homogeneous field on the pressure drop in the 
flow should be mentioned. Of the three sets of magnet coils 
(fig. 2) the set next to the exit end of the experimental duct 
was made currentless. In this way a field distribution curve like 
that indicated in fig. 6, where Mi and M2 are the positions of the 
manometer sockets, was obtained. The direction of the flow in 
the duct is indicated by the arrow. The flow thus first passes 
the stronger part of the field before entering the more feeble part. 
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With a volume velocity or, which is the same, a Reynold’s number 
/{ well within the, domain of laminar flow the observed pressure 
drop was not that corresponding to a homogeneous field of an 
intensity equal to the average value of the field — the average 
intensity was 4800 Gauss — but that corresponding to the higher 
field intensity 5200 Gauss. (Compare curves 9—18 below). On the 
other hand, if the set of coils at the inlet end was made current
less so that the flow took place in the direction from a lower 
field intensity to a higher one the observed pressure drop cor
responded to a lower field-intensity — 5700 Gauss — than the 
average — 5900 Gauss. These observations find their explanation 
in the well-known fact that it takes time to change the velocity 
distribution — on which the pressure drop depends. The distri
bution corresponding to the field at the inlet end of the duct 
persists in some degree after the flow has left this field.

It was concluded from the experiments here indicated that the 
additional pressure drop to which the non-homogeneity illustrated 
in fig. 6 gave rise was otherwise practically imperceptible — in 
spite of the extremely pronounced character of the non-homoge
neity. Thus homogeneity is required less in order to avoid this 
additional pressure drop than on account of the source of error 
illustrated by the experiments referred to above.

The experimental Tubes and Channels.
Five cylindrical glass tubes, indicated in Tab. II below by 

the numbers 11—15, were used in the experiments here 
considered. They were selected from a large stock and were 
carefully calibrated. In no lube did the diameter vary more 
than about 0.5 p. c. within the part in which the pressure 
drop was measured. This part has a length of 28 cm. It 
was of course arranged entirely within the magnetic field. 
The whole length of the tube was 43 cm. the extensions 
on either side of the stretch of observation being 7.5 cm. 
At the inlet end of the tube 6 cm. of the 7.5 cm. were 
inside the magnetic field, at the exit end 2 cm. As stated 
elsewhere, the edge of the experimental tube or pipe was
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kept sharp in order to secure transition from laminar to 
turbulent flow at a definite value of the velocity or of the
Reynolds’ number. The thickness of the wall of the tube
was taken as small as possible, about 0.8 mm., with a 
view to reducing the air gap of the magnet, and so to be
able to produce magnetic fields of the greatest possible
intensity.

Connections to the manometer tubes were obtained 

Fig. 7 a. Mounting of a cylindrical experimental Glass Pipe.

through bores at either end of the 28 cm. stretch of obser
vation. The production of the bores by means of a swiftly 
rotating copper plug covered at the Hat end with oil and 
carborundum required some practice. Slight annealing of 
the tube by drawing it through a luminous gas flame 
would seem a wise precaution before the process of boring 
in order to render breaking of the tube less likely.

The way in which the tube is mounted will appear 
from fig. 7 a. Ii is a light bar of wood to which four wooden 
blocks are fastened. The two extreme blocks C3C4 carry 
two glass lubes or “shafts” 7’3T4, each with a rather wide 
socket, S3S4. Into these sockets the ends of the experimental 
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tube R are “cemented” by means of “picein”. Above the 
bores in the experimental tube are placed two shafts 7\ 
and T2, carried by the blocks and cemented to the 
experimental tube likewise by picein. On 7\ and 7'2 are 
the two sockets for the rubber tubes to the mano
meter. The flow of mercury is passed into and out 
of the experimental pipe by the sockets S5SG. The shafts 
1\T2T3T4 serve as traps for dust particles and minute air

Fig. 7 b. Mounting of rectangular Channel.

bubbles. They are closed above by stoppers made from 
glass tubes.

We pass on to the rectangular ducts. Of these 18 were 
produced. They are indicated as K 21-—K 38 in Tab. II. 
In K 21 the distance between the manometer sockets was 
28 cm., in all the other ducts 14 cm. The total length of 
the ducts was in the latter cases 20 cm., the whole duct 
being mounted within the magnetic field. Fig. 7 b illustrates 
the mounting of a duct. The figure will be understood 
from the explanation given in connection with fig. 7 a. It 
may just be noted that the distance between T4 and T3 
was 4 cm., that between T2 and T4 2 cm., finally that 
the flow was in the direction from 7\ to T2.

In fig. 8 a section of a duct is shown. The rectangular 
channel is formed between the plates BB and the pieces
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Tab. IL

Lisi of experimental Ducts.

No. r
cm.

L
cm.

vT-105 
at 20° C.

vj-IO5 
at 20° C.

11 0.0345 28.02 113 115
12 0.0583 27.93 121 121
13 0.0923 28.00 114 127
14 0.1147 28.02 123 —
15 0.1647 28.00 117 —

No. a b a Vj ■ 1o5
cm. cm. b at 20° C.

K 21 0.030 0.186 0.161 137
K 22 0.014 0.0625 0.224 99
K 23 0.0145 0.254 0.057 112
K 24 0.090 0.060 1.50 —
K 25 0.090 0.035 2.57 130
K 26 0.091 0.1075 0.846 167
K 27 0.091 0.081 1.12 170
K 28 0.091 0.0915 0.995 164
K 29 0.154 0.0415 3.71 145
K 30 0.155 0.060 2.58 159
K 31 0.155 0.1345 1.15 250
K 32 0.056 0.0935 0.60 130
K 33 0.057 0.058 0.99 130
Æ 34 1
K 35 J Gu

0.155 0.030 5.16 178
0.155 0.0525 2.95 75

K 36 0.157 0.0338 4.65 95
K 37 0.157 0.042 3.75 135
K 38 0.157 0.055 2.88 158

ÆA. With the ducts K 34 and K 35, AT were made of
copper, the surfaces forming the top and the floor of the 
channel being in these cases amalgamated. These ducts 
were made to agree exactly with the duct for which the 
theory was developed. With the other ducts AT were made 
of wood or “fiber”. In the ducts K 21 to 28 BB were made
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Fig. 8. Cross-sec
tion of experi
mental Channel.

of glass, in the others of celluloid. C is the 
cement between A and B; generally “asphalt 
lac’’ was employed. After the cementing 
together of the pieces A and B, lac would 
as a rule have entered the duct and had to 
be carefully removed by means of small 
pieces of cotton, wetted with benzol, which 
were pushed or drawn through the duct. 
The dimension 2 b was measured by means 
of a microscope, while 2 a was calculated 

from the total thickness of the duct and from the thick
nesses of the B-sheets.

IL The Results and their Discussion.

Review of the Results.
For each tube or channel the variation with the magne

tic field intensity of the pressure drop between the two 
sockets was determined for a number of values of the 
volume velocity V or of the Reynolds’ number B. The 
latter is, in the case of a cylindrical pipe, defined by 

(1) v n r v

where is the average velocity in cm./sec. over the section 
of the pipe, r the radius of the circular section in cm. and 

v = ~ the dynamical viscosity, i. e. the ratio of the viscofl s
sity and the density in c. g. s. units. In the case of a rect
angular section, 2a-2 ft, r means the hydraulic radius de
fined as

2F ‘2 ab
0 a+b 
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where F is the area and 0 the circumference of the cross
section.

The results of the experiments with each pipe or chan
nel were represented in the shape of a series of curves 
having as abscissae the intensity H of the magnetic field, 
as ordinates the pressure drop h between the sockets 
measured in cm. Hg. Complete, representative sets of ex
periments are given in figs. 9—18. In each figure the 
dimensions of the pipe or channel are stated together with 
the length I (L in Tab. II) in which the pressure drop 
was measured.

It is well known that the turbulent flow in a pipe is 
changed into a laminar flow if the velocity or the Reynolds’ 
number is reduced below a certain value. This value may 
be taken to be R — 1160 (c. g. s.). A laminar flow may, on 
the other hand, be maintained even if the Reynolds’ num
ber is raised considerably above the critical value, provid
ed the inlet end of the pipe is smooth and all disturban
ces of the flow are otherwise avoided. In the experiments 
here considered the edges of the pipe or channel were 
deliberately kept sharp in order to secure in every case a 
well defined transition from a laminar to a turbulent flow.

In the diagrams reproduced in figs. 9—18 this transi
tion is clearly seen in all cases where a turbulent flow is 
observed. A curve is drawn through all the points of 
transition. Above and to the left of this curve, which is 
of a parabolic character, we have the domain of turbulent 
flow, below and to the right that of laminar flow. Within 
the first region the pressure drop and so the apparent 
viscosity decreases with increasing intensity of the magne
tic field. This is due to the damping effect of the field on 
the vortices in the flow. Within the domain of laminar

Vidensk. Selsk. Math.-fys. Medd. XV, 7. 9
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Fig. 18.
Fig. 9— 18. Variation of Pressure Drop with Intensity of the magnetic 

Field.
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flow the pressure drop increases rapidly with the field 
intensity. In cases where the flow is still laminar with no 
magnetic field on, the pressure drop may readily be raised 
to values twice the value corresponding to H = 0 by put
ting on a field of quite moderate intensity. As a matter of 
fact the curves indicate that the pressure drop may be 
raised to any value by increasing the field since obviously 
the drop increases approximately as the field intensity 
when this is not too small. That is to say: the effect of 
the field on the laminar flow is to increase the apparent 
viscosity approximately proportionally to the field intensity. 
With rather small values of the field the apparent viscosity 
varies within the domain of laminar flow in a parabolic 
manner. The facts here stated may now be compared with 
the predictions of the theory referred to in the introduction 
to the paper. — It should, however, be borne in mind 
that the theory is based on certain simplifying assump
tions and can only be expected to hold good in cases 
where these assumptions are fulfilled.

Comparison with the Theory.
The main predictions of the theory may be thus stated.
In a narrow channel of rectangular section 2a-2bcm.2 

(b » a) placed in a homogeneous magnetic field of in
tensity H Gauss perpendicular to the side of the largest 
extension (2 b) there will, when the channel is passed by 

cm.3
a laminar flow V—— of an electrically conductive liquid, 

sec. 1

 3 VL , dyne
P 4ba^e cm.

be a pressure drop p dyne/cm. determined by the formula:

(1) 

where
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Here L is the length of that part of the channel in 
which the pressure drop is measured, z the specific resis
tivity of the liquid while i]'e is the apparent or virtual 
viscosity öl' the liquid in the magnetic field under the 
prevailing conditions. If z0 is small compared to I the 
apparent viscosity r/e may he expressed by

(2 a) le = Z/ + rie = V + !0 9

showing that rj'e and so the pressure drop is that corre
sponding to zero field increased by an amount, the electro
magnetic viscosity resp. the electro-magnetic pressure drop, 
which increases proportionally to the square of the field 
intensity. If z0 is large compared to 1 (strong fields) we 
derive the expression:

(2 b) 7?; = J |/i(F9Ha-]/^+ ^
3 J ■ x 3

from which it is seen that the apparent viscosity z/', and 
so the pressure drop now increases linearly with H. The 
description of the conditions with a laminar flow in a 
homogeneous magnetic field thus given by the theory 
obviously fits in qualitatively with the observations. Quan
titatively the agreement can only be expected to be toler
ably close with flat channels, i. e. with small values of a. 
Fig. 11 corresponds to such a channel, and just in this 
case a comparatively very close agreement was found, as 
will be seen from the direct comparison between the ob- 
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served and the theoretical curve made with the curve V =
0.4 cm3./sec. It should be noted that the channel considered 

sponding to the duct in question. The function ' ,’° ex-

was not closed above and below by walls of highly con
ductive material as assumed in the theory. This, however, 
is obviously of small importance if only the channel is 
very high compared to its width, seeing that in this case 
the electric current lines remain practically rectilinear over 
most of the height of the section, while the conductive 
walls are replaced by the layers of mercury close to the 
top and the bottom of the channel.

Now the experiments not only cover cases in which 
the assumptions of the theory are fairly well fulfilled but 
also such in which the duct differs very much from a flat 
channel placed with its largest side perpendicular to the 
magnetic field. They even comprise investigations on the 
flow in cylindrical pipes. Obviously in such cases the 
theory as given by the equations (1)—(3) cannot be ex
pected to hold good directly. It must be modified in some 
way or other and it is with this modification or adjust
ment we are concerned in the following. We may divide 
our problem into two. The pressure drop in cm. Hg, the 
quality directly observed, may according to (1) and (2) be
written

(4)
3 VLV

4 ba* o g Hg.

The coefficient to is simply the expression for the

pressure drop h0 in a narrow channel when not placed in
a magnetic field. If the channel is not narrow or if the duct 

f (z )
is a cylindrical pipe the coefficient to in (4) should o

3

obviously be replaced by an appropriate expression corre- 
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presses the change of the pressure drop to which the 
magnetic field gives rise (in the case of a laminar flow). 
In accordance herewith it is 1 for H — 0. It will be noted
that the general character of the /i-H-curves is in all cases 

much the same. This suggests that the function , devel

oped for the special case of a flat channel, may be made 
to cover other cases by applying a suitable reduction factor 
to the variable z0 or H.

The points of view here set forth are tested in the 
following paragraphs.

The Flow at Zero Field-Intensity.
/•(- ) 

The expression to replace the coefficient to —~ in

equation (4) of the preceding paragraph is with a cylindrical
pipe of radius r

(1) /»o
8 LVv _ SLr2 
n r* g r3g

v being the dynamical viscosity and R being the Reynolds’ 
number defined by

(2) v

With channels of rectangular section — sides 2 a and 2 b 
— a method for the calculation of the pressure drop at 
zero field-intensity is arrived at in the following way.

The Poiseuille Law for the laminar flow in a cylindri
cal pipe, i. e. (1), may be written in the form 

(3)
2hrg
Lu2

v • r----  = xb-R = 16,

where both ip and R are dimensionless qualities. In case 
of a pipe of rectangular section 2a-21? one may use the 
same form for the law, writing



Hg-Dynamics II. 27

(4) ifj R = K

ratio of 2 times area of section and circumference. K, then,
and replacing r by the “hydraulic radius” defined as the

Fig. 19. Variation of K = ipR with - for rectangular Pipes.

(Lea and Tadros).

of a very flat channel i. e. with b = oc the hydraulic 
radius is 2 a and the formula (4) together with the value 
K = 24 taken from fig. 19 leads to the formula 

(5) h = a « b),

which may be directly derived. With a channel of quadra
tic section, a — b, the hydraulic radius is just equal to a. 
In this case the curve fig. 19 gives K = 14.22 and (4) may 
be written

F. C. Lea and A. G. Tadros. Phil. Mag. (7), 11, 1235, 1931.



28 Nr. 7. Jul. Hartmann and Freimut Lazarus:

(6) /i ■ V (Quadratic channel, a = b),

an expression which is a consequence of a more general for
mula derived by Boussinesq and confirmed experimentally by 
Schiller1. In the general case, the formula for the pressure 
drop becomes:

. = Ä Lv (a + ft)2 v
32’ «y ' a3Z>3

Now plotting the pressure drops, observed for H = 0 
within the domain of laminar flow, figs. 9—18, against K 
or V, straight lines are found from the slope of which the 
dynamical viscosity v may be calculated on the basis of 
expressions (1) and (7). In Tab. II the values thus deter
mined are stated under vL. With cylindrical pipes values 
are found of much the same size, viz. 117 10“°, the value 
which is generally accepted for mercury at 20° C. With 
the rectangular ducts the results are rather fluctuating. 
This is thought to be due to difficulties in the production 
of the ducts and in the cleaning of them.

Values for v may also be calculated from the observ
ations of the pressure drop in cylindrical pipes, at 77 = 0, 
within the domain of turbulent flow, seeing that an em
pirical formula has been derived by Blasius for this 
domain. The formula is

(8) h = 0.06652 z/4-r *4-v

By means of (8) the values of v entered in Tab. II under 
vT were found. As will be seen, they agree well with the 
corresponding values from the laminar domain.

Fig. 20 illustrates the variation of the pressure drop h

Comp. Handbuch der Experimentalphysik IV. 4 Teil 1932, p. 146.
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with the Reynolds’ number R. The curves are derived from

-------- R
Fig. 20. Variation of Pressure Drop with Reynolds’ Number R.

actly proportional to R as predicted by Poiseuille’s ex
pression (1) for H = 0.

It is, however, not only so for H — 0 but for all values 
of H. In the diagram, fig. 20, the variation of h with R 
is also given for the turbulent flow. The transition, with 
H = 0, takes place at R = 1120, i. e. not too far from the 
generally accepted value R — 1160.
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Adjustment of the Function /(s0) to fit the Observations.
The theory of the pressure drop with a flat channel 

can now be given in the general form

(1) /2==/7o(v).^

where h0(V) is the pressure drop corresponding to zero 
field-intensity. The latter is proportional to the volume 
llow (or to the Reynolds’ number).

We shall make an attempt at adjusting this theory for 
other ducts than a flat rectangular channel. In so doing 
we shall first try whether the pressure drop cannot be 
represented by the formula

(2) /, =/lo(v).Ay<L) 

where q is a number depending, with rectangular chan

nels, on the value of ~ only.
b

fhe way in which this attempt was performed may be 
thus explained. We start with a set of observed curves of 
the type of figs. 9—18, fig. 21 a. From this set we may 
derive another set, fig. 21 b, of the type of fig. 20. By means 
of the latter diagram we may construct the /i-H-curve 
corresponding to h0(V) = 3. The way it is done will be 
understood from the figure. The curve found in this way

/i = f(c z0) with II as abscissa instead of zn. Now
u

10 9-------from which with ti = 0.0159 c. g. s. and z =
7] 7. 1 °

4 Ohm-cm. (20° C.) we derive z0 = 0.0250 aH. By means 

is
o

10

ol the latter formula we transform the /i-H-curve into the 
/?-z0-curve and thus have the curve which we try to ex
press by h = ftciZo). It is shown in fig. 21 c. In the same
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figure the theoretical curve h = fCz^ is drawn. For a 
number of values of h the ratio of the corresponding ab

er
Figs. 21 a — c. Diagrams to explain the Adjustment of the Theory to fit 

the Observations.

scissae of h /(zq) and h — f(clz0) is calculated. This 
ratio ct is found to be tolerably constant independent of 

h or z0. So by multiplying the abscissae of the “observed” 
/i-z0-curve by a constant factor the curve is reduced to 
that corresponding to a flat channel (of which ct = 1). 
Or we may, in general, express the pressure drop in a 
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rectangular channel placed in a homogeneous magnetic 
held by the formula (2).

The value of q of course depends on the ratio — of 
b

the two sides of the channel cross-section (a parallel to 
the magnetic force). In fig. 22 the variation of cl with 
a . , TT a n , . .
— is shown. Up to = 3 the variation may, in the semi- 

logarithmic system of coordinates, be represented by a straight 
line corresponding to the dependency 

(3)

So, finally, the formula for the pressure drop in a rect
angular channel may, with a laminar flow, be written

(4) h = h0
3

cm. Hg,

where the /’-function is defined by

(5)

ta nil x

f(x) = x2
x

tanh x
x

With cylindrical pipes also the pressure drop with a 
laminar flow may be expressed by formula (2). The value 
which must here be ascribed to ct was found to be 0.51 
independently of the radius r of the pipe, at any rate 
between r = 0.35 mm. and 0.92 mm. Thus with cylindrical 
pipes the pressure drop with a laminar flow is determined by 

(6)

where it should be noted that z0 is calculated from the 
field-intensity H by the expression
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(7) z0 = 0.0250 rH

r being the radius of the cross-section of the pipe.
In order to illustrate the agreement between the h-H- 

curves calculated by means of expressions (4) and (6) and 
the corresponding observed curves a calculated curve, the 
dot and dash curve, is plotted in each of the diagrams 
ligs. 9—181. It will be seen that in most cases the agree
ment is fairly good. It should be noted that the calculated 
curve is drawn with the same /?0 as the observed curve. 
No account has thus been taken of a possible error in the 
value of h0.

In connection with the discussion here given attention 
may be called to a particular feature of the experimental 
curves of figs. 9—18. If, as indicated in the diagrams, tan
gents are drawn to the several curves of each set corre
sponding to the same abscissa (in the diagrams H — 8000 
Gauss) it is found that all the tangents intersect in the 
same point of the axis of abscissae or nearly so. This 
feature is a direct consequence of the theory, whether in 
the original or in the modified form. For the theory may 
be written
(8) h = CVfCc^o), z0 = 0.0250 aW.

From this expression it follows that

<9) ^ = g-^ = CV.Ct.O.0250af(e1zo) = C1V.
The equation of the tangent to one of the //-/i-curves al
the point (HL, /q) is 

(10)

1 In fig. 11 the test is made with V = 0.45 cm.8/sec.
Vidensk. Selsk. Math.-fys. Medd. XV, 7. 3
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Hence the abscissa of the point of intersection with the 
axis of abscissae is determined by

(11) r___ È1- = I/ - — 1 f(ClZ^

(1)

Here rh is the hydraulic radius which with a channel 

rectangular section 2a-2b is equal to . Again
a + b

the critical velocity, is equal to the volume-velocity
divided by 4 ab. Introducing in (1) this formula may be

1 CtV 1 0.0250 act (ctz0)

i. e. H' is independent of V. From the formula f(z^ = J
—------ —— the following expression for f (zn) mav readily
z0 — tanh z0
be derived :

t'z-a z03 sech2z0 +z02 tanhz0 —2z0 tanh2z0
(12) ! (z«) - -------------- •

By means of (11), (12) and the expression for /'(z0) Hie 
experimental values found for H' could be checked. A 
test of this description would, however, seem superfluous 
after the discussion given in the first part of the present 
paragraph.

The Boundary Curve between the Domains of laminar 
and turbulent Flow.

In the experiments considered measures were taken to 
secure transition from a laminar to a turbulent flow at a 
definite value of the Reynolds’ number The critical 
value may be denoted by R.. It is determined by

R
vc

V

of

7 
C 9

V

written

(2)
f 2 (n 4- b)v 2 (a + b) q



Hg-Dynamics II. 35

Now, if the (low takes place in a homogeneous magnetic 
held the transition is displaced towards larger values of 
the volume flow i. e. V increases. The explanation is most 
likely to be found in the apparent increase of the visco
sity ?/. On this assumption the variation of the critical 
volume-velocity IÇ with II should be

(3)

The corresponding value of the 
channel is determined by 

pressure drop hc in the

(4)

Instead of the critical Reynolds’ number we may here
introduce the critical

H = 0. The latter is

volume-velocity V 

determined by Rc =

corresponding to 
K-o

2(a + h)r glVing

<5) 1 .JL 
12 Q9

Iclllll 
where it will be remembered that fCz«) — —5------ ;—— and

Zq — tanh Zq 
r0 = Ha |/10—9 z 1 l. Equation (5) should represent the 
boundary curve between the domains of the laminar and 
the turbulent flow in the case of a flat channel a « b. In 
figs. 9—18 the actual boundary curves are drawn in all 
cases where the observations include the turbulent domain. 
The boundary curve is of a parabolic character. It is not, 
of course, to be expected that it can be represented, with 
all ducts, by the formula (5). In the first instance the pro
duct with which f2 (z0) is multiplied will generally not 
coincide exactly with the ordinate to the boundary curve 

3
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for // = 0 — owing to shortcomings in the measurement 
of the dimensions of the ducts. We will therefore direct 
our attention to the shape of the boundary curve only 
and we shall make the natural assumption that f(zo) in
(5) must be replaced by /’(c1x0) as found in the previous 
paragraph. That is to say we will assume that, with rect
angular ducts, the boundary curve may be represented by

(6) h — [H-o-lO 0,38 *)] cm. Hg

and with cylindrical pipes by

(7) h = A/Fg A0-51 *o)]2cm. Hg.

These assumptions are put to the test in figs. 9—18 (ex
cept fig. 11) where the full drawn curves are the observed 
curves while the dot-and-dash curves are calculated from 
(6) or (7). With the cylindrical pipes the agreement between 
the two curves is perfect so that only the observed curve 
is drawn. With the rectangular ducts it is still fairly good 
as long as a < b. With a> b larger discrepancies occur, 
which was of course to be expected.

Appendix 1.

Check on the Reynolds’ Law of Similarity.
The material of observations of the present research 

may be utilised for a control of the Reynolds’ Law of 
Similarity in the case of a flow of mercury through cylin
drical or rectangular pipes. For from each of the diagrams 
of which samples are given in ligs. 9—18 the variation — 
at zero field-intensity — of the pressure drop with the 
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flow, characterised either by the volume-velocity V or by 
the Reynolds’ number /?, may be derived. We shall here 
coniine ourselves to the observations from cylindrical pipes. 
Ten years ago the flow of mercury in such pipes was 
compared to that of water and it was found that the 
Reynolds’ Law of Similarity holds good for mercury also1. 
The law was tested in the shape of a curve, having as 

abscissa the Reynolds’ number defined by jRt = —, d 

being the internal diameter of the pipe. The ordinate was 

the quantity = —/4p2\ where h is the pressure drop in 
L\gd)

the length L of the pipe. Now it has become customary 

to define R by Z? = —, where r is the radius of the pipe,
v h . .

and to plot the quantity ip — % — 4 against R. This
L 9 d

we shall do in the following. The earlier test with mercury 
was performed mainly with wider pipes because it was 
then found difficult to obtain reproduceable results with 
narrower pipes. So in all essentials, the test was confined 
to the part of the — RL curve corresponding to values 
of Rt above 10000. With the new experiments the flow in 
rather narrow pipes could be studied without any difficulty 
owing to the introduction of an effective method of clean
ing the pipes. The results of these experiments, therefore, 
supplement the older ones in a very happy way, rendering 
possible the checking of the law down to very low values 
of R.

The following pipes were used in the test:

K 11, d — 0.0689 cm.
K 12, d = 0.1165 cm.

1 See note p. 3 of Introduction.
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K 13, d = 0.1845 cm.
K 15, d = 0.3293 cm.

(1) Lv

In all cases the pressure 
length of 28 cm. of the pipe, 
a ted from the formula:

drop was measured over a 
The value of ip was calcul-

2 r3 q h

a form obtained from the formula given above by intro
ducing R instead of n. In Tab. Ill all the values for ip are

Tab. III.

«■10~3 loSio*
K 11
V'-IO3

K 12
V>-103

K 13
V>-103

K 15
t^-103

0.30 2.477 51.8 _ _ _
0.45 2.653 35.4 ' — — —
0.50 2.699 — 32.40 — —
0.60 2.778 26.3 — — —
0.75 2.875 21.2 22.48 — —
0.90 2.954 17.48 — — —
1.00 3.000 — 16.68 — —
1.05 3.021 15.08 — — —
1.15 3.061 18.20 — — —
1.25 3.097 21.40 19.40 — —
1.35 3.130 21.75 — — —
1.50 3.176 21.30 21.76 21.36 22.24
2.00 3.301 — 20.20 20.12 21.68
2.50 3.398 — 18.92 19.00 20.04
3.00 3.477 — 17.92 18.08 18.76
3.50 3.544 — 17.20 17.40 17.88
4.00 3.602 — — 16.72 16.76
4.50 3.653 — — 16.24 16.32
5.00 3 699 — — 15.68 15.92
5.50 3.740 — — 15.20 15.40
6.00 3.778 — — 14.84 15.16
6.50 3.813 — — 14.56 14.88

stated and in the diagram, fig. 23, they are plotted against 
R. In the same diagram values of ip calculated from the 



40 Nr. 7. Jul. Hartmann and Freimut Lazarus:

earlier test are entered, and so the — R curve is extended 
up to values of R of about 70000, covering nearly the same 
interval as the well-known investigations by Stanton and 
Pannell1. Points from the curve obtained in this latter 
investigation are shown in the diagram. Quite obviously 
the same law holds good for mercury as for the fluids 
examined by Stanton and Pannell. It may be noted that 
the curve which may be drawn on the basis of the mer
cury experiments exhibits the same faint upward bend as 
the Stanton-Pannell curve. If this curvature is neglected 
and a straight line drawn evenly among the points, the 
slope of this line is found to be almost exactly 4, in agree
ment with the formula given by Blasius. Again, it is 
found that the straight line representing the observations 
within the laminar domain corresponds, as it should, to 
the equation ip R = 16.

Appendix IL

The Influence of the magnetic Field
on the turbulent Flow.

From the diagrams figs. 9—18 it is seen that within 
the domain of turbulent flow the pressure drop decreases 
when the intensity of the magnetic field increases. This of 
course is due to a damping of the turbulence, but what is 
observed is not the sole effect of this damping. Together 
with the smoothing out of the vortices which manifests 
itself in a smaller pressure drop there is undoubtedly also 
the other effect of the field known from a laminar flow, 
thus an effect which tends to increase the pressure drop. 
The actual pressure drop is the resultant of these two

1 Phil. Trans. Royal Soc. A. 214.
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effects counteracting each other. In the following the two 
effects are termed the damping effect and the viscosity 
effect respectively.

We may make an attempt to isolate the effect of the 
field on the turbulence i. e. the damping effect. The reasoning 
on which this attempt is based may be stated as follows. 
In fig. 24 hTb2c is the observed curve for the variation 
of the pressure drop in a given length of the tube with a

Fig 24. Diagram illustrating attempt at separating the viscosity effect and 
the damping effect within the domain of turbulent flow.

given flow or a given Reynolds’ number. Now it would 
seem very likely that the damping effect i. e. the reduction 
of the pressure drop due to the damping of the vortices 
is proportional to the square of the field-intensity. That 
is to say, it may be anticipated that the curve for the 
damping effect is a simple parabola. The question then 
arises: How must the curve for the viscosity effect be in 
order to make the curve for the damping effect a parabola. 
Let us assume h'vazb2 to be the curve for the viscosity 
effect within the domain of turbulence. Then a point of 
the curve for the damping effect would be obtained by 
lowering a corresponding point a2 of the observed curve 
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by the amount a3a5. In this way the point a4 is arrived 
at and the whole curve for the damping effect would be

The problem is to choose h'va3b3 in such a way 
that hTa4b4 becomes a parabola. In drawing h’^a3b3 we 
know one thing for certain, namely that the curve is to 
pass the point b3. But in addition we may reasonably make 
the following assumptions: 1) that the curve in the point 
b3 has its tangent in common with the known curve branch 
Z?3c; 2) that the curve has a smooth more or less parabolic 
shape approximately as indicated; 3) that close to H = 0 
the tangent is horizontal; and 4) that the curve is higher 
than the curve corresponding to a laminar flow, i. e. that 
its ordinate at H = 0 is higher than the value of h 
determined by

The last assumption requires some explanation. With 
laminar flow and no field the distribution of velocity across 
the pipe is parabolic. With turbulent flow, i. e. with the 
flow which actually obtains in the pipe, the distribution 
is uniform across most of the diameter, dropping rather 
abruptly to zero within a zone close to the wall. The latter 
type of velocity distribution is just that produced by a 
strong magnetic field acting on a laminar flow and mani
festing itself in an increased pressure drop.

This is the reason why we conclude that the curve 
representing the viscosity effect must at H = 0 be drawn 
through a point h'v higher than that corresponding to hv 
calculated from (1).

The experiments with cylindrical pipes were now dealt 
with in the way indicated. The most reliable of these 
experiments with regard to the pressure drop within the



Hg-Dynamics II. 43
cm Hg

Fig. 25. Construction of Curves for the Damping Effect with Experiments 
performed with Pipe K13.

cm Hg
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turbulent domain were those performed with the widest 
pipes: K 13, 14, and 15, while the pressure drop with the 
narrower pipes K 11 and K 12 was rather uncertain within 
the said domain due to instability of the flow in the 
boundary region between the turbulent and the laminar 
domain. With the pipes K13, 14, and 15, however, rather 
characteristic results were arrived at. If the curve /i'va3i>3 
was drawn in such a way that the ordinate at H = 0, h\r, 
was twice the height hv corresponding to a laminar flow 
/ 8 L \
\hv — 3 R\ then the curve for the damping effect became

a parabola and this parabola was found to be independent 
of the intensity of the flow. In fig. 25 the construction of 
curves for the damping effect with the pipe A" 13 is shown 
and in fig. 26 the test of the parabolic character and of
the independency of the intensity of the flow, i. e. of R,

is illustrated. From the latter diagrams the values of dh
dH2

entered in the following table were found.

Pipe d
cm. dH2 dH2

K 12 0.1165 0.0960 0.0112
K 13 0.1845 0.0722 0.0133
K 14 0.2294 0.0571 0.0131
K 15 0.3298 0.0422 0.0139

From the results with K 13, 14, and 15 we tentatively 
draw the conclusion that the damping effect may be ex
pressed by the simple formula

h — 0.0134 10 6 — (Gauss, cm., cm. Hq)
d

independently of the intensity of the flow (volume-velocity). 
It should be borne in mind that h is the reduction of the 
pressure drop due to the damping effect of the field on the 
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turbulence. It is thus the difference between the ordinates 
of the curve for the damping effect at H = 0 and at the 
field-intensity in question. In the table the values found 
with K 12 are also given. They are, however, less reliable.

One may seek a confirmation of the simple relation 
for the damping effect by a dimensional consideration. If 
it is justifiable to assume that the change in the pressure 
drop pr. cm. due to this effect can depend only on 1) the 
field intensity H, 2) the diameter d of the pipe, and 3) the 
velocity v of the flow then we may write down the equation

— = H d v .

Introducing the dimensions for the various qualities we find 
r r

for the determination of r, s and q: — — + s + q — — 2, — = 1,
—

— r — q —■ —2 from which s = — 1, r = 2, q — 0 and so

= ci'~T (independently of v, V or R)

or (with a constant L and with a given liquid)

. H2
/i = C2*~T 

as found above. “ «
It is quite obvious that the attempt at separating the 

viscosity effect and the damping effect just explained is to 
be considered only as a provisional step in the investigation 
of this domain. So too much weight should not be attached 
to the results which may on a closer examination prove 
more or less false. It is contemplated to make the influence 
of the magnetic field on a turbulent flow the subject of a 
subsequent investigation.

Provisional Laboratory of Technical Physics. Royal Technical College. 
Copenhagen. May 1937.

Færdig fra Trykkeriet den 30. December 1937.




